Data Types in Python

In Python, data types define the type of value a variable can hold. Python provides several built-in data types, categorized into different groups. Understanding these types is essential for effective programming.


1. Basic Data Types

1.1 Numeric Types

Python supports three main numeric types:

  • Integer (int): Whole numbers (e.g., 10, -5)
  • Floating-Point (float): Decimal numbers (e.g., 3.14, -2.5)
  • Complex (complex): Numbers with real and imaginary parts (e.g., 2 + 3j)

Example:

x = 10        # int
y = 3.14      # float
z = 2 + 3j    # complex
print(type(x), type(y), type(z))

Operations on Numeric Types:

# Arithmetic operations
print(10 + 5)  # Addition
print(10 - 5)  # Subtraction
print(10 * 5)  # Multiplication
print(10 / 2)  # Division
print(10 % 3)  # Modulus
print(10 ** 2) # Exponentiation

1.2 Boolean Type

  • Boolean (bool): Represents True or False

Example:

is_python_fun = True
print(type(is_python_fun))  # Output: <class 'bool'>

Booleans are often used in conditions and logical operations.

x = 10
y = 20
print(x > y)  # Output: False
print(x == y) # Output: False
print(x != y) # Output: True

2. Sequence Data Types

2.1 Strings (str)

A string is a sequence of characters enclosed in quotes.

Example:

text = "Hello, Python!"
print(type(text))

String Operations:

text = "Python"
print(text[0])    # Access first character
print(text[1:4])  # Substring (slicing)
print(len(text))  # Length of string
print(text.lower())  # Convert to lowercase
print(text.upper())  # Convert to uppercase
print(text.replace("P", "J"))  # Replace character

2.2 Lists (list)

A list is an ordered, mutable collection of items.

Example:

fruits = ["apple", "banana", "cherry"]
print(fruits[0])  # Access first item
fruits.append("orange")  # Add item to list
print(fruits)

List Operations:

numbers = [1, 2, 3, 4, 5]
numbers.insert(2, 10)  # Insert 10 at index 2
numbers.remove(3)  # Remove 3 from the list
numbers.sort()  # Sort the list
print(numbers)

2.3 Tuples (tuple)

A tuple is an ordered, immutable collection of items.

Example:

coordinates = (10, 20)
print(coordinates[0])  # Access first item

Tuples are faster and safer than lists for immutable collections.


3. Set and Dictionary

3.1 Sets (set)

A set is an unordered collection of unique items.

Example:

numbers = {1, 2, 3, 3, 4}
print(numbers)  # Output: {1, 2, 3, 4} (removes duplicates)

Sets support mathematical operations like union, intersection, and difference.

A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
print(A | B)  # Union
print(A & B)  # Intersection
print(A - B)  # Difference

3.2 Dictionaries (dict)

A dictionary stores key-value pairs.

Example:

student = {"name": "Alice", "age": 21}
print(student["name"])  # Output: Alice

Dictionary Operations:

student["grade"] = "A"  # Add a new key-value pair
del student["age"]  # Remove a key-value pair
print(student.keys())  # Get all keys
print(student.values())  # Get all values

4. Type Conversion

Python allows type conversion between compatible types.

Example:

x = 5   # int
y = float(x)  # Convert to float
z = str(x)  # Convert to string
print(type(y), type(z))

Some common conversions:

print(int("10"))  # Convert string to int
print(float("5.5"))  # Convert string to float
print(list("hello"))  # Convert string to list

5. Summary

✅ Learned about Python’s data types: numeric, boolean, sequences, sets, and dictionaries
✅ Explored operations and conversions between data types
✅ Practiced using lists, tuples, and dictionaries

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to Top